
Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 1
Standard Graphic Element Types

The Graphic Elements system includes a number of “standard”
Graphic Element types. All of these elements share certain
common characteristics. Each type of Graphic Element has its
own creation routine, and several of the standard types provide
additional procedures which can be used only with elements of
that type.

Characteristics Common to All Graphic Elements

All newly-created Graphic Elements are visible, and will be
shown the next time the application program calls
DoWorldUpdate() unless the application program makes them
invisible. The application program (or autochange procedure)
can change the position, visibility, or plane of any element of any
type using the display controller routines described in the last
section.

The creation routines for all of the standard Graphic Elements
have a mode parameter, representing the graphic transfer mode
to be using in drawing the element. This mode should be either
srcCopy or transparent for all Graphic Elements based on
offscreen pixel maps, i.e., all standard elements except the Text
Element. The mode should usually be transparent for all such
elements except those that make up the “bottom-most”
background of the display and those which are converted to
“masked” graphics . For Text Elements only, the mode
parameter should normally be equal to srcOr.

[Masked Graphics … no documentation yet]

Picture Elements and Tiled Elements

The Picture Element is the simplest type of Graphic Element. It
is based on a single image — on the Macintosh, normally a PICT
resource — and its appearance never changes. A new Picture
Element is created and added to a GEWorld by calling:

GrafElPtr NewBasicPICT(GEWorldPtr world, OSType id,

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 2
short plane, short resNum, short mode,
short xPos, short yPos);

Where:

— world is the GEWorld into which the new Graphic Element is to be installed,

— id is the unique four-character name by which the application program will refer
to this Graphic Element,

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 3

— plane is this element's “height” above the background,

— resNum is the resource number of the PICT resource that is the source for this
element,

— mode is the graphic transfer mode used to draw this element, normally srcCopy
for the bottom-most Graphic Element(s) in the scene and elements for which
“masks” have been made, and transparent for the rest,

— xPos and yPos are the horizontal and vertical positions of the upper left-hand
corner of this element in its world.

Like a Picture Element, a Tiled Element is normally based on a single PICT resource. It
differs in that a destination rectangle is specified at its creation, and its rendering
procedure draws it as many times as necessary to fill this rectangle horizontally and
vertically. A Tiled Element is created by calling:

GrafElPtr NewTiledGraphic(GEWorldPtr world, OSType id,
short plane, short resNum,
short mode, Rect destRect);

Where:

— world, id, plane, resNum, and mode are as defined above for the Picture Element,

— destRect is the rectangle to be tiled with this element, in the coordinates of its
GEWorld.

Scrolling Graphic Elements

Like a Picture Element, a Scrolling Element is normally based on a single PICT resource.
The Scrolling Element can scroll, horizontally or vertically or both, within its display
rectangle. Scrolling Elements automatically “wrap around,” so that the top follows the
bottom, the left side follows the right side, etc. The application program creates a Scrolling
Element by calling:

GrafElPtr NewScrollingGraphic(GEWorldPtr world, OSType id,
short plane, short resNum,
short mode, short xPos, short yPos);

Where the meanings of the parameters are the same as for NewBasicPICT(), above.

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 4
The autochange procedure of a Scrolling Element (or the application program) sets its
current scroll position by calling:

void SetScroll(GEWorldPtr world, OSType elementID,
short hScroll, short vScroll);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the Scrolling Element,

— hScroll and vScroll are the new horizontal and vertical components of this
element's scroll position.

Alternatively, the application program can cause a Scrolling Element to scroll automatically
at regular intervals by calling:

void AutoScrollGraphic(GEWorldPtr world, OSType id,
 short interval, short autoHScroll,

short autoVScroll);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the element,

— interval is the time between scrolls in milliseconds,

— autoHScroll and autoVScroll are the numbers of pixels to scroll the element
horizontally and vertically after every interval.

To stop automatically scrolling an element, call AutoScrollGraphic() with autoHScroll and
autoVScroll both equal to zero.

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 5
Frame Sequence Elements

Frame Sequence Elements are based on a sequence of pixel-map images. On the
Macintosh, these are normally derived from PICT resources. Each of these images usually
represents one frame in an animated sequence, though Frame Sequence Elements can also
represent, for example, the “in” and “out” positions of a button. The application program
creates a new Frame Sequence Element by calling:

GrafElPtr NewAnimatedGraphic(GEWorldPtr world, OSType id,
short plane, short resNum,
short mode, short xPos, short yPos,
short nFrames);

Where:

— the meanings of world, id, plane, resNum, xPos, and yPos are the same as for
NewBasicPICT() above,

— mode is the graphic transfer mode used to draw the element (transparent in most
cases, srcCopy for Frame Sequence Elements for which masks have been made),

— nFrames is the number of consecutively-numbered PICT resources, beginning with
resNum, to be used in constructing the Frame Sequence Element.

The Graphic Elements system provides several procedures which can be used by the
autochange procedure of a Frame Sequence Element (or the application program) to
control the animation of the element.

The frame to be displayed can be set explicitly by calling:

void SetFrame(GEWorldPtr world, OSType elementID, short newFrame);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the Frame Sequence
Element,

— newFrame is the number of the frame to be displayed, which must be between 1
and the value of nFrames used when the element was created.

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 6
In most cases, Frame Sequence Elements are used to create animated graphics, and the
frame will always change to the “next” frame in the sequence. Which frame is “next”
depends on the kind of animation sequence being used and the current animation direction.
Each Frame Sequence Element has a field element->seq which specifies the kind of
animation sequence it uses. The Graphic Elements system supports the following kinds of
animation sequences:

typedef enum
{singleframe, reciprocating, loop, oneshot} AnimSequence;

Where:

— singleframe means “no frame changes,” and can be used to stop the animation of a
Frame Sequence Element temporarily or permanently,

— reciprocating causes animation to begin at frame 1 and repeatedly sequence
forward through the frames of the element to the last frame, then sequence
backward through the frames to frame 1.

— loop causes animation to begin at frame 1 and repeatedly sequence forward
through the frames of the element to the last frame, then start over with frame 1,

— oneshot causes animation to begin at frame 1, sequence forward through the
frames of the element to the last frame, then hide the element.

The application or autochange procedure can reverse the directions of these sequences by
calling:

void SetAnimDirection(GEWorldPtr world, OSType elementID,
Boolean forward);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the Frame Sequence
Element,

— forward specifies whether the element's animation sequence is to run forwards or
backwards. For example, if forward is false, an element with a loop animation
sequence would start at the last frame, sequence backwards through its frames to
frame 1, then start over at the last frame.

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 7

When the animation sequence and direction of a Frame Sequence Element have been set,
the application or autochange procedure can advance the animation of that element to its
next frame by calling:

void BumpFrame(GEWorldPtr world, OSType elementID);
void PtrBumpFrame(GEWorldPtr world, GrafElPtr element);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the Frame Sequence
Element, or (in the Ptr… version) element is a pointer to the element.

The PtrBumpFrame() variation is provided for situations in which a pointer to the element is
already available, for example in the element's autochange procedure.

For “constant-motion” Frame Sequence Elements, i.e. those which change frames
continuously but do not otherwise require an autochange procedure, the Graphic Elements
system provides the following procedure, which may be called during the initialization of
such elements to set them in motion:

void AnimateGraphic(GEWorldPtr world, OSType elementID,
short interval, AnimSequence sequence);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the Frame Sequence
Element,

— interval is the time between frame changes in milliseconds,

— sequence is the desired kind of animation sequence, as described above.

To stop automatically animating a Frame Sequence Element, call AnimateGraphic() with an
interval of zero.

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 8
For Frame Sequence Elements which are drawn using the built-in rendering procedure in
transparent mode (or in srcCopy mode for elements for which “masks” have been made),
the Graphic Elements system provides “source mirroring” so that the same source graphic
can be used for screen images which are reversed right-for-left and/or bottom-for-top. The
application program or autochange procedure sets mirroring for a Frame Sequence
Element by calling:

void SetMirroring(GEWorldPtr world, OSType elementID,
Boolean mirrorH, Boolean mirrorV);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the Frame Sequence
Element,

— mirrorH and mirrorV control the horizontal and vertical reversal of
the image: if mirrorH is true, the image will be reversed right-for-left;
if mirrorV is true, it will be inverted bottom-for-top before being
rendered in its GEWorld.

Text Elements

Text Elements are Graphic Elements which show a single line of text in a
font, size, style, and color specifed at creation. The application program
creates a new Text Element and installs it in a GEWorld by calling:

GrafElPtr NewTextGraphic(GEWorldPtr world, OSType id, short plane,
short xPos, short yPos, short mode,
short fontNum, short txStyle, short size,
RGBColor color, StringPtr text);

Where:

— the meanings of world, id, plane, xPos, yPos, and mode have the same definitions as
for NewBasicPICT() above,

— fontNum is the number of the font to use for this Text Element,

— txStyle is the text style for this element,

— size is the text size for this element,

— text is a pointer to a Pascal-style string containing the text for this element.

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 9

Because of the way in which text is drawn, the value passed for mode should almost always
be srcOr for Text Elements.

The text displayed by an existing Text Element can be changed by calling:

void SetTextGraphicText(GEWorldPtr world, OSType elementID,
StringPtr newText);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the Text Element,

— newText is a pointer to a Pascal-style string containing the new text for this
element.

Sensor Elements

The Graphic Elements system includes definitions for elements capable of acting as
buttons, switches, and slider-type controls. The application program controls the position,
visibility, and plane of a Sensor Element as it does for any other Graphic Element, by
calling the display controller routines ShowElement(), MoveElement(), MoveElementTo(),
and SetElementPlane(). The application program should also provide an action procedure
for each Sensor Element it creates, and must call MouseDownInSensor() when the user
presses the mouse button in the area of a window containing a GEWorld in order to give
the Sensor Elements in that world the opportunity to act.

To create a new button-type sensor, the application calls:

GrafElPtr NewButtonSensor(GEWorldPtr world, OSType id,
short plane, short resNum,
short xPos, short yPos);

Where:

— the meanings of world, id, plane, resNum, xPos, and yPos are the same as for
NewBasicPICT() above.

Internally, a button-type sensor is treated as a Frame Sequence Element with two frames,
one for the “off’ position and one for the “on” position of the button. The graphic for a
standard button sensor should consist of two PICT

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 10
resources, numbered resNum and resNum + 1 in the application program's resource file.

The tracking procedure for the standard button sensor follows Macintosh Human Interface
Guidelines. While the user holds the mouse button down, the sensor goes “on” when the
cursor is within its boundaries, ”off” when the cursor is outside. If the mouse button is
released while the cursor is inside it, the sensor calls its action procedure. Note that, for
button-type sensors, the sensorState parameter to this procedure is meaningless, since it
will only be called if the button has been pressed. After the action procedure has returned,
the button reverts to its “off” state.

A switch-type sensor differs from a button-type sensor only in that both the off-to-on and
on-to-off transitions are meaningful. To create a new switch-type sensor, the application
program calls:

GrafElPtr NewSwitchSensor(GEWorldPtr world, OSType id,
short plane, short resNum,
short xPos, short yPos);

Where all the parameters have the same meanings as for NewButtonSensor(). The tracking
procedure for the standard switch sensor is similar to that of the standard button sensor.
However, instead of going “off” when the cursor moves outside its boundaries, it reverts to
its previous state. If the mouse button is released while the cursor is inside its boundaries,
the switch-type sensor changes state and calls its action procedure with sensorState equal
to its new state, either sensorOff or sensorOn.

The application program can explicitly set the state of a switch by calling:

pascal void SetSwitchState(GEWorldPtr world, OSType id,
short newState);

Where:

— world is the GEWorld containing the Sensor Element,

— id is the unique four-character ID assigned to the Sensor Element,

— newState is sensorOff or sensorOn.

The Graphic Elements system includes both horizontal and vertical slider-type sensors.
These sensors consist of two images — one for the background “scale” portion of the
sensor, and one for the sliding portion. Their state is a number between 0 and 100,
representing the position of the slider as a percentage of the distance from left to right (or
bottom to top) of the “scale” graphic. The application program creates a new slider sensor
by calling:

Graphic Elements ©1993 by Al Evans. All rights reserved. (V3.2 2/23/94) 11

GrafElPtr NewSliderSensor(GEWorldPtr world, OSType id, short plane,
short resNum, short xPos, short yPos,

short sliderType, short handleResNum);

Where:

— the meanings of world, id, plane, xPos, and yPos are the same as for NewBasicPICT()
above,

— resNum is the number of the PICT resource representing the background “scale”
portion of the slider sensor,

— sliderType is hSlideSensor for a horizontal slider or vSlideSensor for a vertical
slider,

— handleResNum is the number of the PICT resource containing the graphic for the
sliding portion of the sensor.

The tracking procedure for a slider sensor follows the user's actions with the mouse as long
as the mouse button is down. The Sensor Element's action procedure is called
”continuously,” every time the sensor's setting changes, with its sensorState parameter
equal to the slider's new setting.

The application can explicitly set the position of the slider by calling:

pascal void SetSliderPercent(GEWorldPtr world, OSType id,
short newSetting);

Where:

— world is the GEWorld containing the Sensor Element,

— id is the unique four-character ID assigned to the Sensor Element,

— newSetting is an integer between 0 and 100 (values < 0 or > 100 will be forced into
this range).

